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Abstract— In this paper we present an approach for building
a graph of drivable paths from the reconstructed trajectories
of vehicles detected by lidar and radar sensors mounted in
an autonomous car. The perceived objects are tracked, and
their trajectories are merged, clustered and labeled with meta
information. A graph of the underlying road infrastructure can
be generated with this information. We report on the results of
testing the validity and accuracy of the method. The generated
path graph can be used either to update high precision maps
or for generating local temporary maps, both of them useful
for autonomous driving.

I. INTRODUCTION
Most current path planning algorithms for autonomous

vehicles are based on prerecorded maps [3]. In general,
obtaining a safely drivable path through the environment
consists of following the predefined routes in such maps [16].
Interaction with dynamic obstacles is implemented in a low
level controller [6].

A map based approach offers many advantages for au-
tonomous driving. The car can plan ahead and use, for
example, the shortest path through the road network. The
velocity in each segment can be adapted optimally to the
known geometry of the road ahead. On the other hand, there
is a major disadvantage in map-based approaches. Although
road maps are available for most parts of the world, in many
cases they are not accurate enough or are outdated.

Map data can become obsolete very fast: Roads are closed
down due to construction works, while new roads can be
unfinished. Furthermore, there are streets where the number
or the direction of drivable lanes changes based on time,
weather or volume of traffic. Such frequent challenges are
frequently met using dynamic maps, which can be dis-
tributed to cars through vehicle-to-infrastructure communi-
cation technology.

Another fundamental problem is, that almost all maps
available today lack the necessary level of detail. A very
detailed map is needed for autonomous driving – it can be
at least very helpful. For safe and efficient path planning it
is essential to know details like the number and width of
available lanes, or the exact geometry of an intersection.

The approach described in this paper can be used to
address those shortcomings. A local path graph, representing
the drivable trajectories in the immediate surroundings of the
ego vehicle, is generated automatically from lidar and radar
measurements. The underlying road geometry can be easily
extracted from such a graph and be used as a temporary local
map, or for updating dynamic maps.
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II. RELATED WORK

A lot of research has been performed on automatic or
semi-automatic generation of static or dynamic maps using
environment sensors of vehicles. More recent approaches
rely on multiple scans of the same area with low-cost
sensors [15], while others use existing coarse maps as a basis
for generating accurate lane-level maps [9]. Research effort
has also been put on more specific temporary scenarios, such
as road construction sites [17]. All of these approaches rely
heavily on the detection of static features, in particular lane
markings and other road boundaries. While this is reasonable
in an environment where drivers are using the contemplated
lanes, the approach presented in this paper is usable in
scenarios where the geometry of the road not necessarily
defines the lanes actually used by the road users (e.g. due to
weather or traffic conditions).

In cases where lane markings are not available - either
since they do not exist or because they are temporarily
invisible - autonomous vehicles can orient themselves based
on convoy or platooning behavior of other traffic partic-
ipants, which form temporary lanes. Recent work in this
field focuses on explicit intervehicle communication [4].
Other approaches form convoys with distributed cooperative
control over several lanes and are aiming to incorporate
human drivers through maneuvering instructions on their
HMI [10]. In contrast, we rely only on observation, i.e.
implicit communication, between traffic participants, which
is feasible in a near-future mixed environment of autonomous
and manually driven vehicles.

Examples for reusing the tracks of other individuals for
navigation can also be found in nature, most prominently
in ant colonies, adapted to mark the path to food sources
through the deposition of pheromones [8]. The principle
of ”digital pheromones” has been also used in a robotics
context, e.g. for UAVs [12]. The word ”stigmergy” is used
to describe such a behavior, i.e., how agents can commu-
nicate and coordinate implicitly through their actions and
the resulting changes in the environment [5]. Corne et al.
emphasize in [2], that this kind of communication is indirect
and compare its fundamental ”stigmergy structure” with a
notepad which is used by the swarm members to leave cues.

The idea of using the tracks provided by traffic participants
to extract further information, like region detection [7] or
driving directions [18], seems natural.

However, tracks generated by GPS receivers installed in
many vehicles lack the required accuracy to distinguish the
different lanes in a single road. Therefore, the autonomous
car “MadeInGermany” (see Fig. 1), instrumented with a



highly accurate GPS navigation unit, was used for data
collection for the experiments described in this paper. High
precision navigation systems, as well as several lidar and
radar sensors allow the tracking of surrounding traffic par-
ticipants with an accuracy in the range of centimeters. More
details about the AutoNOMOS project can be found in [11].

Fig. 1. The autonomous car “MadeInGermany” at a roundabout in Berlin

III. EXTRACTING DRIVABLE PATHS
The basic idea of the approach presented in this paper is

to extract a graph of drivable paths from the trajectories of
nearby vehicles perceived by lidar and radar sensors. Fig. 2
shows on overview of the extraction process. The individual
steps of the process are explained in what follows.
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Fig. 2. Overview of the extraction process: (a) The trajectories of surround-
ing vehicles detected by sensor fusion modules are represented as a list of
waypoints. (b) The waypoints have information on their predecessors and
successors. (c) Close-by waypoints are merged. Neighborship is preserved.
(d) The merged waypoints are clustered according to the ID of the objects
involved. Connections between the clusters are constructed from the existing
neighborship between the merged waypoints (adapted from [13]).

A. Detecting Surrounding Vehicles

The first step in the processing pipeline of the approach
described in this paper is the detection of the surrounding
traffic participants, that is, mostly moving cars. For the
experiments in IV a sensor setup as depicted in Fig. 3 was
used.

Fig. 3. Sensor configuration used for the experiments: six single Ibeo Lux
lidar sensors (red) and one TRW radar (green) [14].

The position and velocity of objects around the ego vehicle
are tracked with a Kalman filter. Based on the position of the
objects detected by the lidar sensors, the velocities detected
by the radar sensor are used to improve the overall accuracy
of object recognition and tracking. The update frequency of
the sensor fusion modules is 12.5 Hz. The object detection
and tracking based on lidar/radar sensor fusion is explained
in detail in [14].

The global coordinates of the objects detected by the
sensors are calculated using the information provided by
an Applanix POS LV 510 Positioning System, installed in
our vehicle. The position accuracy provided by the system
at 200 Hz is under 0.3 meters when using real time GPS
correction data.

The result of this detection process is a list of objects with
their corresponding unique IDs used for the tracking process.
Each object has an associated velocity, size and boundary
box. Furthermore, a list of the waypoints representing the
trajectory of the object (compare Fig. 4) is generated by our
software. Detected objects are classified into static, dynamic
or unknown, based on their observed velocities. This is useful
for the extraction of the road geometry, because only moving
objects can provide information about drivable paths.

The objects received from the sensor processing modules
are filtered according to their state of movement, size and
classification. For the next processing step the following
information is stored for each object:

• The ID of the object;
• The trajectory represented as list of waypoints;
• The predecessor and successor of each waypoint;
• The velocity of the object at the respective waypoints.



Fig. 4. Detected objects and their trajectories in a roundabout [13].
Dynamic objects are shown in red, static objects are shown in green, and
unknown objects are shown in gray. The filtered trajectories of objects that
are candidates for being vehicles are shown in red.

While the IDs and the neighborship relations of the
waypoints are essential for the clustering process described
below, the corresponding velocities constitute additional in-
formation which is useful, for example, to provide a recom-
mendation about the optimal or maximal speed limits in later
applications.

B. Merging Waypoints

The second step during the processing of the perceived
objects is to merge neighboring waypoints of the trajectories
- possibly of different objects - to find representative merged
waypoints for drivable paths. This has the advantage of
reducing the overall number of waypoints used in the clus-
tering described in the next section. We adapted an algorithm
proposed by Guo et al. in [7] to this task. The six steps of
the method are:
1) Start from any waypoint s and let C = ∅ be the set of

representatives.
2) Find all the waypoints within a distance d to s that

are not represented by any existing representatives in C.
Calculate the centroid c of such points (including s).

3) Find the waypoints pi within distance d to c. For each
point pi:
• If pi is not represented yet, assign pi to c (i.e. pi will

be represented by c).
• If pi is already assigned to another representative q

but pi is closer to c, re-assign pi to c (i.e. pi will be
represented by c instead of q).

4) Choose the next point s, which is a neighbor to any point
in pi and is not yet represented. If all neighbors of pi are
represented, then randomly choose s from the remaining
not-represented points;

5) Repeat steps (2)-(4) until all waypoints are represented
6) Move each representative to the center (centroid) of the

points that it represents.
The distance d used in this algorithm can be chosen ac-

cording to the expected width of the lanes. It is important to
preserve the IDs of the objects from which the waypoints are
originating, as well as the information about the neighborship

relations of each waypoint. This information is used to apply
clustering in the next processing step. Therefore, a merged
waypoint can have more than one predecessor and more
than one successor. Also the velocities associated with each
waypoint are preserved with a mimimum, maximum, and
average velocity for each merged waypoint.

C. Clustering Merged Waypoints

Finally, the merged waypoints are clustered according
to their neigborship relations and the IDs of the objects
involved. A merged waypoint is a candidate to be assigned
to a cluster if it is a successor or predecessor of one of
the waypoints already in the cluster. The other criterion for
the assignment to a certain cluster is whether the IDs of
the objects contributing to the neighboring merged waypoint
match. Only if those two conditions are met, the waypoint
is added to an existing cluster - otherwise a new cluster
containing the waypoint is created. The waypoints of each
cluster created in such a way all share the same set of
IDs. Connections between the clusters can be established
using the neighborship relations of the first and last point in
each cluster (compare Fig. 2). A graph, which represents the
drivable paths, can be created by traversing those connected
clusters.

IV. EXPERIMENTAL RESULTS

We use the ARND map format developed in the
AutoNOMOS project [11] to evaluate the validity and accu-
racy of the path graph extracted from the perceived objects.
The expected trajectory of vehicles driving in a specific lane
of the road network is represented as an Akima spline [1].
It is created semi-manually by averaging the data of several
recorded test drives. Methods are provided to calculate the
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Fig. 5. Scenario A: city highway A100, Berlin. Expected trajectories
extracted from the ARND map are shown in grey for comparison. (a) The
trajectories of surrounding vehicles. (b) The generated path graph with a
merge distance of 1 meter. (c) The generated path graph with a merge
distance of 2 meters. (b) The generated path graph with a merge distance
of 5 meters.
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Fig. 6. Scenario B: Siegessäule roundabout, Berlin. Expected trajectories
extracted from the ARND map are shown in gray for comparison. (a) The
trajectories of surrounding vehicles. (b) The generated path graph with a
merge distance of 1 meter. (c) The generated path graph with a merge
distance of 2 meters. (b) The generated path graph with a merge distance
of 5 meters. Lane changes of the detected vehicles produce some artifacts
which could be post-processed, but which also provide useful information.

distance to the nearest lane spline - given a position - in an
efficient way. Details on the format and map creation can be
found in [3].

The experiments presented in this paper involve two
scenarios: (A) a city highway (A100, Berlin), and (B) an
inner city roundabout (Siegessäule, Berlin). Compare Fig. 5
and Fig. 6 respectively for a visualization of the road layout
and generated graphs.

Scenario A comprises three lanes – the ego vehicle is
driving in the center lane. Another eight vehicles were
tracked within a radius of 50 meters around the ego vehicle.
There were no lane changes for the observed vehicles. The
accuracy of the localization of the ego vehicle was better
than 0.1 meters. Scenario B comprises four to five lanes in a
roundabout with several lanes forking out. The ego vehicle is
driving in the second lane from the inside. Ten other vehicles
were tracked in a radius of 50 meters around the ego vehicle.

Table I summarizes the results of the experiments, where
nv denotes the count of observed vehicles, d the merge
distance used, µdist the mean of the distance of the merged
waypoints to the nearest expected trajectories from the

ARND map, σdist the standard deviation of the distance of
the merged waypoints to the nearest expected trajectories,
nmwp the overall count of merged waypoints, and nmwp/c

the count of merged waypoints per cluster. In the scenario
B* clusters whose first and last merged waypoint do not
share the same nearest expected trajectory were excluded.
This provides results without considering the lane changes
of some of the observed vehicles. Taking into account that
the largest source of error is that the other vehicles are
actually not driving exactly on the expected trajectories, we
can neglect the measurement errors (between 0.072 to 0.094
meters for object detection [14] and less than 0.1 meters
for localization). The most relevant parameter here is the
distance d used in the merging process. As the results and
visualization of the experiments clearly show, a value set to
approximately half of the actual lane width gives the best
results.

Another relevant aspect is the influence of lane changes
of observed vehicles. As can be seen in Table I there is a
difference of about 15% in the accuracy of scenario B and B*
(where lane changing clusters were excluded). Nonetheless
those lane changes can provide hints for autonomous path
planning or can be excluded from the graph for map updates
(compare [13]).

TABLE I
EXPERIMENTAL RESULTS

Scenario nv d µdist σdist nmwp nmwp/c

1 m 0.3963 m 0.3252 m 207 2.7970

A 8 2 m 0.3355 m 0.2072 m 68 7.4756

5 m 0.6256 m 0.4103 m 38 1.9972

1 m 0.4443 m 0.3216 m 276 2.9360

B 10 2 m 0.4138 m 0.2970 m 122 3.3870

5 m 0.6570 m 0.4807 m 54 2.0753

B* 10 2 m 0.3528 m 0.2380 m 114 3.6774

V. CONCLUSIONS

The approach presented in this chapter provided the ex-
pected results. Our approach was implemented and tested for
the generation of temporary local maps for path planning
for an autonomous vehicle in real traffic [13]. The path
graph and the velocity information stored for each merged
waypoint were used to calculate a desired trajectory and
velocity for the subsequent control modules, which generate
the commands for gas, brake, and steering.

The approach can be adapted to specific criteria, e.g.
by including more information in the merged waypoint
structure, such as the type or size of the detected object.
A possible improvement would be to consider the direction
of the trajectories in the merging process. Doing so, the
trajectories can be merged over the whole estimated lane
width while still preserving a smaller distance between the
point in longitudinal direction. Furthermore, the approach



profits greatly from more vehicles being observed. The
clusters tend to converge to the center of the lane, when
there are more than one trajectories per lane - as can be
seen clearly on the left side of Fig. 5 and Fig. 6 respectively.
Therefore a major improvement would be the inclusion of
more trajectories and observed vehicles respectively. The
experiments presented in this paper were carried out on data
perceived in a single drive-through. More vehicles could
be used to collect the data, possibly commercial vehicles
connected by vehicle-to-infrastructure communication.

Another obvious future application would be the creation
or update of static maps. Although approaches which rely on
static landmarks, such as lane markings, are certainly more
accurate with respect to the exact geometry of the lanes,
our approach is also applicable in situations where those
landmarks are not available. Furthermore it could be detected
where the geometry of the road contradicts the behaviour
of the human drivers, i.e. where lane markings are often
ignored, and road construction planning could be improved.

Fig. 7. Pathplanning with a temporary local map [13]. The generated
trajectory is shown in green, the underlying trajectories are shown in red.
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